



## **DPP** – **3**

Video Solution on Website:https://physicsaholics.com/home/courseDetails/83 Video Solution on YouTube:https://youtu.be/VvbPbYhdRG8 Written Solution on Website:https://physicsaholics.com/note/notesDetalis/21 Q 1. An ideal fluid flows through a pipe of circular cross section with diameter 5cm and 10cm as shown. The ratio of velocities of fluid at A and B is (a) 4 : 1 (b) 1 : 4 (c) 2:1(d) 1 : 2 Q 2. An incompressible liquid flows through a horizontal tube as shown in figure. Then the velocity 'v' of the fluid is A meter<sup>2</sup>  $\rightarrow$  V<sub>1</sub> = 3.0 m/s  $\wedge$  m<sup>4</sup> meter (b) 1.5 m/s (a) 3 m/s (c) 1 m/s (d) 2.25 m/s Q 3. The pipe shows the volume flow rate of an ideal liquid at certain time and its direction. What is the value of Q in  $m^3/s$ ? (Assume steady state and equal area of

cross section at each opening)







Water is moving with a speed of 5.18 m/s through a pipe with a cross-sectional area Q4. of 4.20  $cm^2$ . The water gradually descends 9.66 m as the pipe increase in area to 7.60  $cm^2$ . The speed of flow at the lower level is

| (a) 3 m/s    | (b) $5.7 \text{ m/s}$ |
|--------------|-----------------------|
| (c) 3.82 m/s | (d) 2.86 m/s          |

- The cross-sectional area of water pipe entering the basement is  $4 \times 10^{-4} m^2$ . The Q 5. pressure at this point is  $3 \times 10^5 N/m^2$  and the speed of water is 2 m/s. This pipe tapers to a cross-sectional area of 2  $\times 10^{-4} m^2$  when it reaches the second floor 8 m above the basement. Calculate the speed and pressure of water flow at the second floor (g =  $10 \text{ m/s}^2$ ) (a) 4 m/s,  $2.14 \times 10^5 N/m^2$ (b) 2 m/s,  $1.05 \times 10^5 N/m^2$ (c) 4 m/s,  $1.05 \times 10^5 N/m^2$ (d) 2 m/s,  $2.05 \times 10^5 N/m^2$
- Water from a tap emerges vertically downward with an initial speed of 1.0 m/s. The Q 6. cross-sectional area of the tap is  $10^{-4} m^2$ . Assume that the flow is steady. What is the cross-sectional area of the stream 0.15 m below the tap? Use  $g = 10 m/s^2$ (b)  $4 \times 10^{-4} m^2$ (d)  $2 \times 10^{-2} m^2$ (a)  $5 \times 10^{-5} m^2$ 
  - (c)  $3 \times 10^{-3} m^2$
- A horizontal pipeline carries water in a streamline flow. At a point along the pipe, **O** 7. where the cross-sectional area is  $10 \text{ cm}^2$ , the water velocity is 1 m/s and the pressure is 2000 Pa. The pressure of water at another point where the cross-sectional area is 5  $cm^2$ , is......Pa. (Density of water =  $10^3 \text{ kg}/m^3$ ) (a) 200 Pa (b) 1000 Pa

(c) 500 Pa (d) 800 Pa

- Q 8. Water flowing steadily through a horizontal pipe of non-uniform cross-section. If the pressure of water is  $4 \times 10^4 N/m^2$  at a point where cross-section is 0.02  $m^2$  and velocity of flow is 2m/s. The pressure at a point where cross-section reduces to 0.01  $m^2$  is 3.4  $\times 10^n$  Pa. What is the value of n?
  - (a) 2 (b) 3 (c) 4 (d) 5
- Q 9. In the following fig. is shown the flow of liquid through a horizontal pipe. Three tubes A, B and C are connected to the pipe. The radii of the tubes A, B and C at the junction are respectively 2 cm, 1 cm and 2 cm. It can be said that the



(a) Height of the liquid in the tube A is minimum





- (b) Height of the liquid in the tubes A and B is the same
- (c) Height of the liquid in all the three tubes is the same
- (d) Height of the liquid in the tubes A and C is the same
- Q 10. A manometer connected to a closed tap reads  $3.5 \times 10^5 \text{ N/m^2}$ . When the valve is opened, the reading of manometer falls to  $3.0 \times 10^5 \text{ N/m^2}$ , then velocity of flow of water is
  - (a) 100 m/s (b) 10 m/s (c) 1 m/s (d)  $10\sqrt{10}$  m/s
- Q 11. A large tank is filled with water (density =  $10^3 \text{ kg/m}^3$ ). A small hole is made at a depth 10m below water surface. the range of water issuing out of the hole is R on ground. What extra pressure must be applied on the water surface so that the range becomes 2R (take 1 atm =  $10^5$  Pa and g =  $10 \text{ m/s}^2$ )



Q 12. There is a hole in the bottom of tank having water. If total pressure at bottom is 3 atm  $(1 \text{ atm} = 10^5 N/m^2)$  then the velocity of water flowing from hole is

(a)  $\sqrt{400} \ m/s$  (b)  $\sqrt{600} \ m/s$ (c)  $\sqrt{60} \ m/s$  (d) none of these

Q 13. There is a hole of area A at the bottom of cylindrical vessel. Water is filled up to a height h and water flows out in t second. If water is filled to a height 4h, it will flow out in time equal to

| (a) t  | $\square$ | (b) 4t            |
|--------|-----------|-------------------|
| (c) 2t |           | (d) $\frac{t}{4}$ |

- Q 14. A cylindrical tank of height 0.4m is open at the top and has a diameter 0.16m. Water is filled in it up to height of 0.16m. Find the time taken to empty the tank through a hole of radius  $5 \times 10^{-3} m$  in its bottom. (g = 9.8  $m/s^2$ ) (a) 21.2 s (b) 46.3 s (c) 18.7 s (d) 51.1 s
- Q 15. Equal volumes of two immiscible liquids of densities  $\rho$  and  $2\rho$  are filled in a vessel as shown in figure. Two small holes are punched at depth  $\frac{h}{2}$  and  $\frac{3h}{2}$  from the surface of lighter liquid. If  $V_1$  and  $V_2$  are the velocities of a flux at these two holes, then  $V_1/V_2$  is :



Q 16. A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is 1.5 gm/cc. The pressure difference between the point P and S will be



Q 17. The figure shows a siphon in action. Cross sectional area of pipe is 1sq.cm. and atmospheric pressure is 100000 Pa. The liquid flowing through the siphon has a density of 1 g/cc. Calculate the pressure at point B ( $g = 10 \text{ m/s}^2$ )







~~^^

## **Answer Key**

| Q.1 a     | Q.2 c  | Q.3 c  | Q.4 d  | Q.5 a  |  |
|-----------|--------|--------|--------|--------|--|
| Q.6 a     | Q.7 c  | Q.8 c  | Q.9 d  | Q.10 b |  |
| Q.11 d    | Q.12 a | Q.13 c | Q.14 b | Q.15 d |  |
| Q.16 c    | Q.17 b | SBU    |        | Pue    |  |
| PRASICSAM |        |        |        |        |  |