DPP - 3

Video Solution on Website:-
Video Solution on YouTube:-
Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/83
https://youtu.be/VvbPbYhdRG8

Q 1. An ideal fluid flows through a pipe of circular cross section with diameter 5 cm and 10 cm as shown. The ratio of velocities of fluid at A and B is

(a) $4: 1$
(b) $1: 4$
(c) $2: 1$
(d) $1: 2$

Q 2. An incompressible liquid flows through a horizontal tube as shown in figure. Then the velocity ' v ' of the fluid is
(a) $3 \mathrm{~m} / \mathrm{s}$
(b) $1.5 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$
(d) $2.25 \mathrm{~m} / \mathrm{s}$

Q 3. The pipe shows the volume flow rate of an ideal liquid at certain time and its direction. What is the value of Q in $\mathrm{m}^{3} / \mathrm{s}$? (Assume steady state and equal area of cross section at each opening)

(a) 10×10^{-6}
(b) 11×10^{-6}
(c) 13×10^{-6}
(d) 18×10^{-6}

Q 4. Water is moving with a speed of $5.18 \mathrm{~m} / \mathrm{s}$ through a pipe with a cross-sectional area of $4.20 \mathrm{~cm}^{2}$. The water gradually descends 9.66 m as the pipe increase in area to 7.60 cm^{2}. The speed of flow at the lower level is
(a) $3 \mathrm{~m} / \mathrm{s}$
(b) $5.7 \mathrm{~m} / \mathrm{s}$
(c) $3.82 \mathrm{~m} / \mathrm{s}$
(d) $2.86 \mathrm{~m} / \mathrm{s}$

Q 5. The cross-sectional area of water pipe entering the basement is $4 \times 10^{-4} \mathrm{~m}^{2}$. The pressure at this point is $3 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and the speed of water is $2 \mathrm{~m} / \mathrm{s}$. This pipe tapers to a cross-sectional area of $2 \times 10^{-4} \mathrm{~m}^{2}$ when it reaches the second floor 8 m above the basement. Calculate the speed and pressure of water flow at the second floor ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) $4 \mathrm{~m} / \mathrm{s}, 2.14 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}, 1.05 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
(c) $4 \mathrm{~m} / \mathrm{s}, 1.05 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
(d) $2 \mathrm{~m} / \mathrm{s}, 2.05 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

Q 6. Water from a tap emerges vertically downward with an initial speed of $1.0 \mathrm{~m} / \mathrm{s}$. The cross-sectional area of the tap is $10^{-4} \mathrm{~m}^{2}$. Assume that the flow is steady. What is the cross-sectional area of the stream 0.15 m below the tap? Useg $=10 \mathrm{~m} / \mathrm{s}^{2}$
(a) $5 \times 10^{-5} \mathrm{~m}^{2}$
(b) $4 \times 10^{-4} \mathrm{~m}^{2}$
(c) $3 \times 10^{-3} \mathrm{~m}^{2}$
(d) $2 \times 10^{-2} \mathrm{~m}^{2}$

Q 7. A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the cross-sectional area is $10 \mathrm{~cm}^{2}$, the water velocity is $1 \mathrm{~m} / \mathrm{s}$ and the pressure is 2000 Pa . The pressure of water at another point where the cross-sectional area is 5 cm^{2}, is......Pa. (Density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$)
(a) 200 Pa
(b) 1000 Pa
(c) 500 Pa
(d) 800 Pa

Q 8. Water flowing steadily through a horizontal pipe of non-uniform cross-section. If the pressure of water is $4 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$ at a point where cross-section is $0.02 \mathrm{~m}^{2}$ and velocity of flow is $2 \mathrm{~m} / \mathrm{s}$. The pressure at a point where cross-section reduces to 0.01 m^{2} is $3.4 \times 10^{n} \mathrm{~Pa}$. What is the value of n ?
(a) 2
(b) 3
(c) 4
(d) 5

Q 9. In the following fig. is shown the flow of liquid through a horizontal pipe. Three tubes A, B and C are connected to the pipe. The radii of the tubes A, B and C at the junction are respectively $2 \mathrm{~cm}, 1 \mathrm{~cm}$ and 2 cm . It can be said that the

(a) Height of the liquid in the tube A is minimum
(b) Height of the liquid in the tubes A and B is the same
(c) Height of the liquid in all the three tubes is the same
(d) Height of the liquid in the tubes A and C is the same

Q 10. A manometer connected to a closed tap reads $3.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. When the valve is opened, the reading of manometer falls to $3.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, then velocity of flow of water is
(a) $100 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(c) $1 \mathrm{~m} / \mathrm{s}$
(d) $10 \sqrt{10} \mathrm{~m} / \mathrm{s}$

Q 11. A large tank is filled with water (density $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$). A small hole is made at a depth 10 m below water surface. the range of water issuing out of the hole is R on ground. What extra pressure must be applied on the water surface so that the range becomes 2R (take $1 \mathrm{~atm}=10^{5} \mathrm{~Pa}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(a) 9 atm
(b) 4 atm
(c) 5 atm
(d) 3 atm

Q 12. There is a hole in the bottom of tank having water. If total pressure at bottom is 3 atm $\left(1 \mathrm{~atm}=10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)$ then the velocity of water flowing from hole is
(a) $\sqrt{400} \mathrm{~m} / \mathrm{s}$
(b) $\sqrt{600} \mathrm{~m} / \mathrm{s}$
(c) $\sqrt{60} \mathrm{~m} / \mathrm{s}$
(d) none of these

Q 13. There is a hole of area A at the bottom of cylindrical vessel. Water is filled up to a height hand water flows out in t second. If water is filled to a height 4 h , it will flow out in time equal to
(a) t
(b) 4 t
(c) 2 t
(d) $\frac{t}{4}$

Q 14. A cylindrical tank of height 0.4 m is open at the top and has a diameter 0.16 m . Water is filled in it up to height of 0.16 m . Find the time taken to empty the tank through a hole of radius $5 \times 10^{-3} \mathrm{~m}$ in its bottom. $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 21.2 s
(b) 46.3 s
(c) 18.7 s
(d) 51.1 s

Q 15. Equal volumes of two immiscible liquids of densities ρ and 2ρ are filled in a vessel as shown in figure. Two small holes are punched at depth $\frac{h}{2}$ and $\frac{3 h}{2}$ from the surface of lighter liquid. If V_{1} and V_{2} are the velocities of a flux at these two holes, then V_{1} / V_{2} is :

(a) $\frac{1}{2 \sqrt{2}}$
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) $\frac{1}{\sqrt{2}}$

Q 16. A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is $1.5 \mathrm{gm} / \mathrm{cc}$. The pressure difference between the point P and S will be

(a) $10^{5} \mathrm{~N} / \mathrm{m}$
(b) $2 \times 10^{5} \mathrm{~N} / \mathrm{m}$
(c) zero
(d) infinity

Q 17. The figure shows a siphon in action. Cross sectional area of pipe is $1 \mathrm{sq} . \mathrm{cm}$. and atmospheric pressure is 100000 Pa . The liquid flowing through the siphon has a density of $1 \mathrm{~g} / \mathrm{cc}$. Calculate the pressure at point $\mathbf{B}\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) 0.7 atm
(b) 0.8 atm
(c) 0.9 atm
(d) 0.6 atm

Answer Key

Q. 1 a	Q. 2 c	Q. 3 c	Q. 4 d	Q. 5 a
Q. 6 a	Q. 7 c	Q. 8 c	Q. 9 d	Q. 10 d
Q. 11 d	Q. 12 a	Q. 13 c	Q. 14 b	Q. 15 d
Q. 16 c	Q. 17 b	\bigcirc)

